2017-18 Solution
Analysis 111 - MIDTERM Exam - Semester I

1. Let f:R™ x R™ — RP be a bilinear function.

(a) Prove that hlllcr)nﬂol‘f(( .

(b) Using this or otherwise, prove that Df(a,b)(z,y) = f(a,y) + f(z,b). Here Df(a,b) denotes
the total derivative of f at the point (a,b) € R™"t™.

Solution:

(a) Let {e;}—; and {g;}JL, be the standard bases for R™ and R™ respectively. Then for h € R™
and k € R’”

m

h = Zmzeza k—ZyJQJ
By bilinearity, we get

=D > wwf(eig).

i=1 j=1

Also, ||(h, k)| = (X1, =2 + > yf)% Hence for each i, |z;| < ||(h, k)||. Thus

155 5% a9l

LBl
[(h, )| [[(h, )l
> 2 lillyslllf (es, )l
< i=15=1
- [[(h, )|
ZZ l;lll £ (eir ;)]
i1 j=1
— 0 as y; — 0.
Hence lim KU:RIL — g
(h,k)—0 [(hF)]
(b) The map (z,y) — f(a,y) + f(z,b) from R™T" — RP is linear because of the bilinearity of f.
Now,
: If(p,q) — fa,b) — fla,g—=b) = flp—a,b)| _ . 1f(p,q) — fla,q) — f(p — a, D)
lim = lim
(@)~ (a,b) (P, ) = (a, ) (ps)—>(a:) I(p —a,q = 0)|
1f(p—a,q) — f(p—a,b)|
= lim
(p2a)—(a,b) [(p—a,q—0b)
_ If(p—a,q —b)
(p.a)=(ab) [[(p—a,q— b

=0 (by (a)).



2. (a)
(b)

(c)

Hence Df(a,b)(x,y) = f(a,y) + f(x,b) gives the total derivative of f at the point (a,b) €
Rn+™,

State the Inverse and the Implicit Function Theorems.

Show that the system of equations v = u* — u + uv + v,y = cos(u) + sin(v), can be solved for
(u,v) as a continuously differentiable function F of (x,y), in some neighborhood of (0,0), in
such a way that (u,v) = (0,0) when (x,y) = (0,1). What is the differential of F at (0,1)?

Can the equation xz + yz +sin(z +y + z) = 0 be solved, in a neighborhood of (0,0,0) for z as
a continuously differentiable function z = g(x,y) of (x,y), with g(0,0) =0¢

Solution:

(a)

(b)

3. (a)
(b)

i. Theorem 0.1 (Inverse Function Theorem) [I1] Suppose f is a continuously differen-
tiable function of an open set E C R™ into R™, f'(a) is invertible for some a € E and
b= f(a). Then
A. there exist open sets U and V in R™ such that a € U, b € V, f is one-one on U and

f)=Vv.
B. if g is the inverse of [ defined in V by g(f(x)) = z, x € U, then g is continuously
differentiable on 'V and g(y) = (f'(g9(y))) "L,y e V.

ii. Theorem 0.2 (Implicit Function Theorem) [1] Let f be a continuously differentiable
function of an open set E C R™™™ into R™ such that f(a,b) = 0 for some point (a,b) € E.
Let A = f'(a,b) and A, and Ay be given by Azh = A(h,0) and A, (k) = A(0, k). Assume
that A, 1is invertible. Then there exist open sets U C R™*™ and W C R™ with (a,b) € U
and b € W satisfying the following property:

For each y € W, there exists a unique = such that

(z,y) €U and f(z,y) =0.

Define this x to be g(y). Then g is a continuously differentiable mapping of W into
R",g(b) = a, f(g(y),y) = 0 and ¢'(b) = —(A;) ' A,.
Let f: R? — R? be defined as f(u,v) = (u* — u + uv + v2, cos(u) + sin(v)). Then f(0,0) =

[ _01 (1) } . Hence f/(0,0) is invertible and the inverse function theorem is applicable. f(0,0) =
(0,1). Hence there exist neighbourhoods U of (0,0) and V of (0,1) and a continuously differ-

entiable function F' : V' — U such that F(f(u,v)) = (u,v). In particular, F(0,1) = (0,0). Fur-
ther, F/(a,y) = (/(F(a) . thus (0.1 = (7/(F0.1) 7 = (7000 = | 1§ |

Let f(z, (z,y)) = 2z+yz+sin(z+y+2z). Then f(0,(0,0)) =0and A = f'(0,(0,0)) = (1,1,1).
Then A, = 1 is invertible (as it is non-zero), thus the implicit function theorem is applicable.
That is, there exist open sets U C R3, W C R? with (0,0,0) € U, (0,0) € W and a continuously
differentiable mapping g on W such that f(g(z,y),z,y) = 0, (z,y) € W. That is, z can be
expressed as a continuously differentiable function z = g(z,y) of (x,y), with ¢(0,0) = 0.

Give an example of a bounded real valued function on a rectangle in R? (for any d) which is
not integrable.

Define a Jordan region, and also define a set with volume zero.



(c) Prove that a bounded set E C R? is a Jordan region, if and only if, the boundary of E has
d-volume zero.

Solution:

1 z,€QH ;
(a) Let R be a rectangle in R?. Take f: R — R by f = 2 €Q c?r any
0 , otherwise.

Then f is bounded but not integrable on R. It can be seen that the upper sum of f given by

U(f,G9) = > r.eg Mj|IR;| = X R cg |Rj| for every grid G on R, where M; = sup f(z) =1 Vj.
E ’ :EERJ‘
However for every grid G, the lower sum of f, L(f,G) = ZRjeg m;|R;| = 0, where m; =

;enzgjf (z) =0Vj.

(b) [2] Let E be a bounded subset of R?. The outer sum of E with respect to a grid G =
Ry,---,R,} on arectangle R C R? is given b
{By,-- Ry g g y

R; nE
For a rectangle R containing F, the outer volume of E is defined as

Vol(E) = inf  V(E,G),
G grid on R
and is independent of the rectangle R chosen. The inner sum of E with respect to a grid G on
a rectangle R is given by

U(Eag) = Z |RJ|

R,CE°
For a rectangle R containing FE, the inner volume of E is defined as

Vol(E)= sup w(E,G),
G grid on R

and is independent of the rectangle R chosen. F is said to be a Jordan region if Vol(E) =
Vol(E). For a Jordan region E and a rectangle R containing F, the outer and inner volumes
are equal and the volume of F is defined by

VIE) =, it V(B9

If V(E) =0, E is said to have volume zero.

(c) [2] Suppose E C R? is a Jordan region. Let E C R, a rectangle. We first observe that for any
grid G on R,

Suppose V(9E) = 0. Then V(OE,G) = V(E,G) — v(E,G) > Vol(E) — Vol(E). Taking the
infimum, we get

0 =V(9E) > Vol(E) — Vol(E) > 0.

Hence F is a Jordan region. Conversely, suppose E is a Jordan region. Then Vol(E) = Vol(E).
For € > 0, there exist grids H; and Hs such that Vol(E) +& > V(E,H;) and Vol(F) — e <



v(E,Hz). Taking G to be a refinement of H; and Ha, we get Vol(E) + & > V(E,G) and
Vol(E) — e < v(E,G). Subtracting, we get

0<V(OE,G)=V(E,G) —v(E,G) < Vol(E) — Vol(E) + 2¢ = 2.
Thus V(0F) = 0.

4. Let U be an open subset of R?, let K C U be a compact set. Suppose that f : U — R is a continuously
differentiable function. Let E := {(x,y) € K|f(x,y) = 0}. Suppose df is never zero on E. Show
that E is a set of area (that is, 2-volume) zero in R2.

Solution:

Let (a,b) € E. Then either %(a, b) # 0 or g—i(a, b) # 0. Assume without loss of generality that

%(a, b) # 0. Then by the implicit function theorem, there exist open sets U, ) and W, ) such
that (a,b) € Uqp), b € W, and for every y € W, ), there exists unique x such that (z,y) € U,
and f(z,y) = 0. We write g (y) = z, that is f(g(.)(y),y) = 0. By compactness, there exists
n € N such that we have E C UL U(q, p,)- Let U; = U, p,), Wi = W(a, s,) and g(a, ;) = gi- Then
E=U",U;NE. Let (z,y) € U;NE. Then f(x,y) =0 and (z,y) € U;. Observing the proof of the
implicit function theorem, we see that this implies that y € W,;. Hence (z,y) = (9:(y),y). That is,

UiNE C{(g:i(y),y) : y € Wi}

For each i, G; = {(9:(v),y) : y € W;} is a Jordan region of Jordan volume 0 (as it is the graph of
the function g;). Hence E C U™ ,G; is also a Jordan region with volume 0.
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