
2017-18 Solution
Analysis III - MIDTERM Exam - Semester I

1. Let f : Rn × Rm → Rp be a bilinear function.

(a) Prove that lim
(h,k)→0

|f(h,k)|
|(h,k)| = 0.

(b) Using this or otherwise, prove that Df(a, b)(x, y) = f(a, y) + f(x, b). Here Df(a, b) denotes
the total derivative of f at the point (a, b) ∈ Rn+m.

Solution:

(a) Let {ei}ni=1 and {gj}mj=1 be the standard bases for Rn and Rm respectively. Then for h ∈ Rn

and k ∈ Rm,

h =

n∑
i=1

xiei, k =

m∑
j=1

yjgj .

By bilinearity, we get

f(h, k) =

n∑
i=1

m∑
j=1

xiyjf(ei, gj).

Also, ‖(h, k)‖ = (
∑n

i=1 x
2
i +

∑m
j=1 y

2
j )

1
2 . Hence for each i, |xi| ≤ ‖(h, k)‖. Thus

‖f(h, k)‖
‖(h, k)‖

=

‖
n∑

i=1

m∑
j=1

xiyjf(ei, gj)‖

‖(h, k)‖

≤

n∑
i=1

m∑
j=1

|xi||yj |‖f(ei, gj)‖

‖(h, k)‖

≤
n∑

i=1

m∑
j=1

|yj |‖f(ei, gj)‖

→ 0 as yj → 0.

Hence lim
(h,k)→0

|f(h,k)|
|(h,k)| = 0.

(b) The map (x, y)→ f(a, y) + f(x, b) from Rm+n → Rp is linear because of the bilinearity of f .
Now,

lim
(p,q)→(a,b)

‖f(p, q)− f(a, b)− f(a, q − b)− f(p− a, b)‖
‖(p, q)− (a, b)‖

= lim
(p,q)→(a,b)

‖f(p, q)− f(a, q)− f(p− a, b)‖
‖(p− a, q − b)‖

= lim
(p,q)→(a,b)

‖f(p− a, q)− f(p− a, b)‖
‖(p− a, q − b)‖

= lim
(p,q)→(a,b)

‖f(p− a, q − b)‖
‖(p− a, q − b)‖

= 0 (by (a)).
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Hence Df(a, b)(x, y) = f(a, y) + f(x, b) gives the total derivative of f at the point (a, b) ∈
Rn+m.

2. (a) State the Inverse and the Implicit Function Theorems.

(b) Show that the system of equations x = u4 − u + uv + v2, y = cos(u) + sin(v), can be solved for
(u, v) as a continuously differentiable function F of (x, y), in some neighborhood of (0, 0), in
such a way that (u, v) = (0, 0) when (x, y) = (0, 1). What is the differential of F at (0, 1)?

(c) Can the equation xz + yz + sin(x + y + z) = 0 be solved, in a neighborhood of (0, 0, 0) for z as
a continuously differentiable function z = g(x, y) of (x, y), with g(0, 0) = 0?

Solution:

(a) i. Theorem 0.1 (Inverse Function Theorem) [1] Suppose f is a continuously differen-
tiable function of an open set E ⊂ Rn into Rn, f ′(a) is invertible for some a ∈ E and
b = f(a). Then

A. there exist open sets U and V in Rn such that a ∈ U , b ∈ V , f is one-one on U and
f(U) = V .

B. if g is the inverse of f defined in V by g(f(x)) = x, x ∈ U , then g is continuously
differentiable on V and g(y) = (f ′(g(y)))−1, y ∈ V .

ii. Theorem 0.2 (Implicit Function Theorem) [1] Let f be a continuously differentiable
function of an open set E ⊂ Rn+m into Rn such that f(a, b) = 0 for some point (a, b) ∈ E.
Let A = f ′(a, b) and Ax and Ay be given by Axh = A(h, 0) and Ay(k) = A(0, k). Assume
that Ax is invertible. Then there exist open sets U ⊂ Rn+m and W ⊂ Rm with (a, b) ∈ U
and b ∈W satisfying the following property:
For each y ∈W , there exists a unique x such that

(x, y) ∈ U and f(x, y) = 0.

Define this x to be g(y). Then g is a continuously differentiable mapping of W into
Rn, g(b) = a, f(g(y), y) = 0 and g′(b) = −(Ax)−1Ay.

(b) Let f : R2 → R2 be defined as f(u, v) = (u4 − u + uv + v2, cos(u) + sin(v)). Then f ′(0, 0) =[
−1 0
0 1

]
. Hence f ′(0, 0) is invertible and the inverse function theorem is applicable. f(0, 0) =

(0, 1). Hence there exist neighbourhoods U of (0, 0) and V of (0, 1) and a continuously differ-
entiable function F : V → U such that F (f(u, v)) = (u, v). In particular, F (0, 1) = (0, 0). Fur-

ther, F ′(x, y) = (f ′(F (x, y)))−1, thus F ′(0, 1) = (f ′(F (0, 1)))−1 = (f ′(0, 0))−1 =

[
−1 0
0 1

]
.

(c) Let f(z, (x, y)) = xz+yz+sin(x+y+z). Then f(0, (0, 0)) = 0 and A = f ′(0, (0, 0)) = (1, 1, 1).
Then Az = 1 is invertible (as it is non-zero), thus the implicit function theorem is applicable.
That is, there exist open sets U ⊂ R3, W ⊂ R2 with (0, 0, 0) ∈ U, (0, 0) ∈W and a continuously
differentiable mapping g on W such that f(g(x, y), x, y) = 0, (x, y) ∈ W . That is, z can be
expressed as a continuously differentiable function z = g(x, y) of (x, y), with g(0, 0) = 0.

3. (a) Give an example of a bounded real valued function on a rectangle in Rd (for any d) which is
not integrable.

(b) Define a Jordan region, and also define a set with volume zero.
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(c) Prove that a bounded set E ⊂ Rd is a Jordan region, if and only if, the boundary of E has
d-volume zero.

Solution:

(a) Let R be a rectangle in Rd. Take f : R→ R by f =

{
1 xi ∈ Q for any i,

0 , otherwise.

Then f is bounded but not integrable on R. It can be seen that the upper sum of f given by
U(f,G) =

∑
Rj∈GMj |Rj | =

∑
Rj∈G |Rj | for every grid G on R, where Mj = sup

x∈Rj

f(x) = 1 ∀j.

However for every grid G, the lower sum of f , L(f,G) =
∑

Rj∈Gmj |Rj | = 0, where mj =

inf
x∈Rj

f(x) = 0 ∀j.

(b) [2] Let E be a bounded subset of Rd. The outer sum of E with respect to a grid G =
{R1, · · · , Rp} on a rectangle R ⊂ Rd is given by

V (E,G) =
∑
Rj∩Ē

|Rj |.

For a rectangle R containing E, the outer volume of E is defined as

Vol(E) = inf
G grid on R

V (E,G),

and is independent of the rectangle R chosen. The inner sum of E with respect to a grid G on
a rectangle R is given by

v(E,G) =
∑

Rj⊆Eo

|Rj |.

For a rectangle R containing E, the inner volume of E is defined as

Vol(E) = sup
G grid on R

v(E,G),

and is independent of the rectangle R chosen. E is said to be a Jordan region if Vol(E) =
Vol(E). For a Jordan region E and a rectangle R containing E, the outer and inner volumes
are equal and the volume of E is defined by

V (E) = inf
G grid on R

V (E,G).

If V (E) = 0, E is said to have volume zero.

(c) [2] Suppose E ⊂ Rd is a Jordan region. Let E ⊆ R, a rectangle. We first observe that for any
grid G on R,

V (E,G)− v(E,G) = V (∂E,G). (1)

Suppose V (∂E) = 0. Then V (∂E,G) = V (E,G) − v(E,G) ≥ Vol(E) − Vol(E). Taking the
infimum, we get

0 = V (∂E) ≥ Vol(E)−Vol(E) ≥ 0.

Hence E is a Jordan region. Conversely, suppose E is a Jordan region. Then Vol(E) = Vol(E).
For ε > 0, there exist grids H1 and H2 such that Vol(E) + ε > V (E,H1) and Vol(E) − ε <
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v(E,H2). Taking G to be a refinement of H1 and H2, we get Vol(E) + ε > V (E,G) and
Vol(E)− ε < v(E,G). Subtracting, we get

0 ≤ V (∂E,G) = V (E,G)− v(E,G) < Vol(E)−Vol(E) + 2ε = 2ε.

Thus V (∂E) = 0.

4. Let U be an open subset of R2, let K ⊂ U be a compact set. Suppose that f : U → R is a continuously
differentiable function. Let E := {(x, y) ∈ K|f(x, y) = 0}. Suppose df is never zero on E. Show
that E is a set of area (that is, 2-volume) zero in R2.

Solution:

Let (a, b) ∈ E. Then either ∂f
∂x (a, b) 6= 0 or ∂f

∂y (a, b) 6= 0. Assume without loss of generality that
∂f
∂x (a, b) 6= 0. Then by the implicit function theorem, there exist open sets U(a,b) and W(a,b) such
that (a, b) ∈ U(a,b), b ∈W(a,b) and for every y ∈W(a,b), there exists unique x such that (x, y) ∈ U(a,b)

and f(x, y) = 0. We write g(a,b)(y) = x, that is f(g(a,b)(y), y) = 0. By compactness, there exists
n ∈ N such that we have E ⊆ ∪ni=1U(ai,bi). Let Ui = U(ai,bi),Wi = W(ai,bi) and g(ai,bi) = gi. Then
E = ∪ni=1Ui ∩E. Let (x, y) ∈ Ui ∩E. Then f(x, y) = 0 and (x, y) ∈ Ui. Observing the proof of the
implicit function theorem, we see that this implies that y ∈Wi. Hence (x, y) = (gi(y), y). That is,

Ui ∩ E ⊆ {(gi(y), y) : y ∈Wi}.

For each i, Gi = {(gi(y), y) : y ∈ Wi} is a Jordan region of Jordan volume 0 (as it is the graph of
the function gi). Hence E ⊆ ∪ni=1Gi is also a Jordan region with volume 0.
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